
How Scrum has taken the tester’s role to new heights
Scrum has been key to strengthening Agile methods in systems development organizations
around the world over the past decade, while Agile has gone from being quirky and 
controversial to essentially standard practice. But how have methods like Scrum altered 
the tester's role in development organizations? In this article, you’ll learn more about 
some of the most significant changes.

Testing has crept ever closer to development

According to Scrum, the team should be as self-sufficient as possible. This means that 
collectively, the team members should have every skill needed to complete a task; and 
since few functions can be considered complete without testing, most teams need testers. 
No other facet of Scrum methodology has had a bigger impact on the testing role than 
this. In contrast to traditional development methodologies, Scrum has pushed testing into 
development teams, physically as well as procedurally.

Historically, development and testing have been separated by an organizational chasm, 
one which persists even in some companies that have adopted Scrum. However, by 
planning and conducting testing in close conjunction with development work, these 
organizational boundaries are slowly fading away. Testers now enter the team earlier, 
often at the same time as developers. Seeing it from the development side, traditional 
testing tasks used to be an external activity of planning tests, executing them on an 
ongoing basis, and reporting results. Nowadays, most testers sit scattered across 
development teams, with each team sharing responsibility for software that is coded, 
tested, and ready for delivery.

Figure 1 – The Scrum development cycle.

Naturally, some testing activities should stay separate from development; partially to 
maintain objectivity, and also because these activities come later in the sequence and 
hence can’t be planned at the same time. 



Testing work starts earlier

Scrum automatically assumes for testing in the development process as early as possible – 
something which is undeniably positive and which most organizations strive for. Testing 
can review the business requirements early on and, based on the testers’ skills, influence 
the system design. This gets the testing discussion started early – even before the team 
starts writing code – and keeps testability from falling into the background where it 
frequently gets forgotten. Without this focus, teams often forget about testing during the 
requirements and design stages.

The earlier you detect defects, the cheaper they’ll be for you to fix. Defects are also 
referred to as bugs, design errors, or other terms that all signify something that’s different 
from what is expected. Correcting these deviations costs the team dearly, in the form of 
extra work like additional documentation, regression testing, and potentially expensive re-
delivery to the customer. Cost, stress, and embarrassment are all excellent reasons to 
introduce testing right out of the starting blocks and to keep trying to discover errors as 
early and as often as possible. There are countless cases where, during an early 
requirements discussion, a tester’s simple question made a client or coder rethink a critical
point. Discovering defects at the design stage is considerably less costly than fixing failures 
found later.

Work proceeds in iterations

When testing and development teams plan work together, the development team can 
deliver work more frequently for testing (and of course, working together in a team boosts
cooperation and camaraderie). If team members can hand over internal deliveries 
informally, they can spend less time on the detailed documentation normally required. 
Assuming that the team has flexible build and deployment tools, it can deliver work to 
testing frequently, with very small iterations inside the sprint (see Figure 2).

Figure 2 – The sprint iteration contains delivery iterations. 

Continuous delivery iterations are worth striving for, for several reasons: for example, 
testers see software that’s similar to previous iterations and isn’t as “jumpy”. They give 
developers feedback earlier, when they’re still developing the software and can quickly 



correct bugs while they’re actively working on the code. The disadvantage, however, is the
risk that developers drop their focus on quality before they throw things over the fence, 
for a mere “unofficial,” internal delivery. Teams need to work together to find the best 
balance, where developers self-test software to a sufficient level before they deliver it to 
their tester colleagues.

With repeated sprint iterations, the product owner also naturally gets insight into how the 
work is progressing. By adding, removing and prioritizing tasks from the product backlog, 
the product owner can continuously control how the product evolves.

Close collaboration between development and testing also creates opportunities for 
continuous learning within the team. Testers deepen their technical knowledge about the 
product being developed, making them more effective at planning the testing strategy, 
and resolving bugs that nevertheless get through. Meanwhile, the developers gain a better
grasp of how testing works and can take better advantage of testing environments, testing
data and other assets that the testing team possesses.

The tester's role on the team is evolving

The “purest” version of Scrum recommends that anyone on the team should be able to 
take on any role. In reality, this is very rare in medium- to large-sized organizations 
because employees are usually either developers or testers, so teams typically have 
dedicated testers. 

On the bright side, dedicated testers are usually allowed and even expected to ask tough 
questions, which would have been overstepping boundaries even a few years ago, before 
testing was well-rooted in the development process.

Organizations traditionally expected testers to objectively examine the deliverables they 
received and report back on the quality (or lack thereof) they actually found. In the worst 
cases, this led to repressive "quality police" but in better organizations, testing remained 
constructively independent. In these organizations, testing teams could report defects via 
various bug reporting tools without having to worry about who would be on the receiving 
end. In Scrum, testers are an integral part of the team, and provide feedback on delivered 
work in a close relationship with developers. Consequently, Scrum introduced a novel 
challenge to the testers’ role: the risk that testers get too “chummy” with developers and 
don’t fully expose the defects they uncover. 

On the other hand, it’s certainly easier to explain defects face-to-face, to someone you 
know well, than to a complete stranger. Testers have to stick to their stern stance 
regarding what the Scrum team delivers, while individual members never cease to be 
players on a productive team. Given this, it’s crucial that they know how to (and 
remember to) provide critical feedback constructively.

The test manager’s role has changed, too

Among these broader changes, the test manager’s job has shifted into more of a 
coordinating role, responsible for strategically planning testing across various teams. Now, 



testers can take on tasks like planning, reporting, and documentation in the team, while 
the test manager compiles and synthesizes their work. The test manager also has to 
coordinate different types of testing activities to keep major differences between teams 
from arising; as before, the test manager serves as the nexus of testing activities for the 
project, and collects and compiles test results on the team level. In large projects with 
parallel Scrum teams, it’s easy for teams to focus solely on the one part of the system that 
they themselves are building, so the test manager has to ensure the integrity of the 
system, long before integration formally starts.

BONUS – IS THE TEST LEADER STILL NEEDED IN THE AGILE WORLD?

Efficiency through automation

Agile methodology only provides the preconditions for shortening the time it takes to 
transform an idea into software. In Scrum, you expect that what the team produces in a 
sprint (1-4 weeks of development time) will naturally be of high-enough-quality to deliver 
to a customer, production, or end-users. 

However, this requires the testers to examine components newly developed in the sprint, 
as well as preexisting code that may be affected – which may be impossible without 
automated regression testing if the existing body of code is large. Testers should focus 
manual efforts on newly developed components, where it’s most useful and is most likely 
to detect defects. You can save significant resources if the team of testers knows how to 
build automated test suites that can be continuously executed – even if it requires help 
from the developers.

BONUS – WITHOUT AUTOMATED TESTING, YOU CAN'T WORK AGILE

Value-adding activities move to center stage

According to Lean and Agile methodologies, organizations should continuously seek to 
eliminate waste, so no one does any work that doesn’t add value. This is especially 
important from a tester’s perspective, since testers traditionally prefer to have the project 
deliver smaller chunks of functionality with few defects rather than big, buggy releases. 

Project planners usually prioritize bug fixes over other tasks that the team needs to 
perform. However, testers may be forced to tolerate defects going uncorrected, since the 
trouble to repair them simply does not create enough net value for the business. 

On the other hand, it can be less costly to the organization to make even small bug fixes 
with very little beneficial impact, if the developers simply perform them on their own 
initiative. If the team has to document, discuss, and then prioritize defects, they can take 
hours to administer before they can even begin a fix. This approach obviously requires that
the project has come to a stage that allows “open season” on bugs.

Scrum in the future?

Scrum is just a tool like many other methodologies and it doesn’t suit every situation. It 

http://www.reqtest.com/blog/you-cant-work-agile-without-automated-testing/
http://www.reqtest.com/blog/is-the-test-leader-needed-in-the-agile-world/


will serve you well in a variety of problems that arise in software development, but there 
are others it cannot solve and it can even introduce new ones. You’re expected, for 
example, to know which tasks need to be performed in the near future and to be able to 
estimate the time they require fairly well. That said, if you’re in a maintenance cycle that 
often is incident-driven, reliable information is seldom available, and reliable planning flies
out the window. In such situations, agile methods like Kanban offer a more effective 
approach.

Productivity and quality in software development are notoriously difficult to measure. The 
widespread adoption and impact of agile methods is equally difficult to measure and 
evaluate objectively. Regardless of the results, there is no obvious way to get back to 
traditional methods – even if we wanted to. Many organizations have abandoned the 
waterfall method, since it simply can’t keep up with rapidly shifting business needs. 
Instead, they’ve adopted agile methods that allow room for natural shortcomings in 
requirements and a constantly-changing external environment.

With Scrum at the forefront, agile methodologies have changed the way testing relates to 
development. Testers enter the process earlier, and now deliver results together with 
developers. This makes it even more important that they are able to communicate 
effectively and maintain productive relationships within and outside the testing team. 
Testers need to increasingly question which tests will add the most value, and what can be
automated. While the new approach that agile methodologies have introduced will still be 
around a decade from now, specific methods such as Scrum will certainly not survive, but 
be replaced by even more optimized approaches – their names won’t be important, as 
long as the agile principles remain. Hopefully, working “agilely” will be so instinctual by 
then, that we will wonder why we ever questioned its principles at all.

Next steps

• Scrum borrowed its basic principles from Lean. Read more in the article “What does 
Lean mean for requirements management and testing?”
• Read more about testing automation in the article “Test Automation in Agile projects.”

About the author

Ulf Eriksson is one of the founders of ReQtest, an online bug tracking software hand-built 
and developed in Sweden. ReQtest is the culmination of Ulf’s decades of work in 
development and testing. Ulf is a huge fan of Agile and counts himself as an early adopter 
of the philosophy, which he has followed for a number of years in his professional life as 
well as in private.

Ulf’s goal is to make life easier for everyone involved in testing and requirements 
management and he works towards this goal in his role of Product Owner at ReQtest, 
where he strives to make ReQtest easy and logical for anyone to use, regardless of their 
technical knowledge or lack thereof. 

http://reqtest.com/
http://www.reqtest.com/blog/test-documentation-in-agile-projects/
http://www.reqtest.com/newsletters/lean-and-requirements-management-and-testing/
http://www.reqtest.com/newsletters/lean-and-requirements-management-and-testing/


The author of a number of white papers and articles, mostly on the world of software 
testing, Ulf is also slaving over a book, which will be compendium of his experiences in the 
industry. Ulf lives in Stockholm, Sweden.


	About the author

